(本题16分)
如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为
,
(1)以射线OC为轴的正向,OB为
轴正向,建立直角坐标系,求
出斜坡CD所在直线方程;
(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).
设函数.
(1)画出函数y=f(x)的图像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求实数x的范围.
已知圆方程为.
(1)求圆心轨迹的参数方程C;
(2)点是(1)中曲线C上的动点,求
的取值范围.
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.
求证: (1);
(2)AB2=BE•BD-AE•AC.
(本题满分12分)
已知函数在(0,1)上是增函数.(1)求
的取值范围;
(2)设(
),试求函数
的最小值.
(本小题满分12分)
设A1、A2是双曲线的实轴两个端点,P1P2是双曲线的垂直于
轴的弦,
(Ⅰ)直线A1P1与A2P2交点P的轨迹的方程;
(Ⅱ)过与
轴的交点Q作直线与(1)中轨迹
交于M、N两点,连接FN、FM,其中F
,求证:
为定值;