(本小题满分16分)已知⊙和点
.
(Ⅰ)过点向⊙
引切线
,求直线
的方程;
(Ⅱ)求以点为圆心,且被直线
截得的弦长4的⊙
的方程;
(Ⅲ)设为(Ⅱ)中⊙
上任一点,过点
向⊙
引切线,切点为Q. 试探究:平面内是否存在一定点
,使得
为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
已知实数,函数
.
(1)当时,求
的最小值;
(2)当时,判断
的单调性,并说明理由;
(3)求实数的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
如图,设是单位圆上一点,一个动点从点
出发,沿圆周按逆时针方向匀速旋转,12秒旋转一周.
秒时,动点到达点
,
秒时动点到达点
.设
,其纵坐标满足
.
(1)求点的坐标,并求
;
(2)若,求
的取值范围.
噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝)由公式
(
为非零常数)给出,其中
为声音能量.
(1)当声音强度满足
时,求对应的声音能量
满足的等量关系式;
(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为
时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.
如图,四棱锥的底面是正方形,
⊥平面
,
(1)求证:;
(2)求二面角的大小.
设函数.
(1)求函数在
上的值域;
(2)证明对于每一个,在
上存在唯一的
,使得
;
(3)求的值.