一汽车厂生产A、B、C三类轿车,每类轿车有豪华型和标准型两种型号,某月生产情况如下表(单位:辆)
|
轿车A |
轿车B |
轿车C |
舒适型 |
100 |
150 |
x |
标准型 |
300 |
450 |
600 |
按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(I)求x的值;
(I)列出所有基本事件,并求出至少有一辆是豪华型轿车的概率.
设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立;
(Ⅰ)(本问5分)求实数a、b的值;
(Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n),
证明:
已知,
,3].
(1)求f(x);
(2)求;
(3)在f(x)与的公共定义域上,解不等式f(x)>
+
.
设a>0,函数f(x)=-ax在[1,+∞)上是单调函数.
(1)求实数a的取值范围;
(2)设≥1,f(x)≥1,且f(f(
))=
,求证:f(
)=
.
已知函数(其中
且
)
(I)求函数f(x)的反函数
(II)设,求函数g(x)最小值及相应的x值;
(III)若不等式对于区间
上的每一个x值都成立,求实数m的取值范围。
如关于的方程
有解,求实数
的取值范围。