某工厂某种航空产品的年固定成本为万元,每生产
件,需另投入成本为
,当年产量不足
件时,
(万元).当年产量不小于
件时,
(万元).每件商品售价为
万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量
(件)的函数解析式;
(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?
19.如图,在四棱锥中,
∥
,
,
,
⊥
,
⊥
,
为
的中点.求证:
(1)∥平面
;
(2)⊥平面
.
函数,其中
。
(1)若函数在其定义域内是单调函数,求
的取值范围;
(2)若对定义域内的任意
,都有
,求
的值;
(3)设,
。当
时,若存在
,
使得,求实数
的取值范围。
设椭圆:
,直线
过椭圆左焦点
且不与
轴重合,
与椭圆交于
,当
与
轴垂直时,
,
为椭圆的右焦点,
为椭圆
上任意一点,若
面积的最大值为
。
(1)求椭圆的方程;
(2)直线绕着
旋转,与圆
:
交于
两点,若
,求
的面积
的取值范围。
如图一,平面四边形ABCD关于直线AC对称,,
,
。
把沿BD折起(如图二),使二面角A-BD-C的余弦值等于
。对于图二,
(1)求的长,并证明:
平面
;
(2)求直线与平面
所成角的正弦值。
数列的前
项和为
,
,
,等差数列
满足
,
。
(1)分别求数列,
的通项公式;
(2)若对任意的,
恒成立,求实数
的取值范围。