(本小题满分12分)已知是定义在
上的偶函数,且当
时,
.
(1)求的解析式;
(2)在所给的坐标系内画出函数的草图,并求方程
恰有两个不同实根时的实数
的取值范围.
已知数列{}的前n项和
,数列{
}满足
=
.
(I)求证数列{}是等差数列,并求数列{
}的通项公式;
(Ⅱ)设,数列{
}的前n项和为Tn,求满足
的n的最大值.
如图1,的直径AB=4,点C、D为
上两点,且
CAB=45°,
DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2.
(I)求证:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在点G,使得FG平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.
中国航母“辽宁舰”是中国第一艘航母,“辽宁”号以4台蒸汽轮机为动力,为保证航母的动力安全性,科学家对蒸汽轮机进行了170余项技术改进,增加了某项新技术,该项新技术要进入试用阶段前必须对其中的三项不同指标甲、乙、丙进行通过量化检测.假如该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为、
、
.指标甲、乙、丙合格分别记为4分、2分、4分;若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响.
(I)求该项技术量化得分不低于8分的概率;
(II)记该项新技术的三个指标中被检测合格的指标个数为随机变量X,求X的分布列与数学期望.
在△ABC中,已知A=,
.
(I)求cosC的值;
(Ⅱ)若BC=2,D为AB的中点,求CD的长.
已知椭圆:
的焦距为
,离心率为
,其右焦点为
,过点
作直线交椭圆于另一点
.
(Ⅰ)若,求
外接圆的方程;
(Ⅱ)若直线与椭圆
相交于两点
、
,且
,求
的取值范围.