如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
直线l的方程为(a+1)x+y+2-a=0(aR)。
(1)若l在两坐标轴上的截距相等,求a的值;
(2)若l不经过第二象限,求实数a的取值范围。
如图,四棱锥P—ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上。
(1)求证:平面AEC⊥PDB;
(2)当PD=AB且E为PB的中点时,求AE与平面PDB所成角的大小。
已知△ABC中,A(1,1),B(m,),C(4,2),1<m<4。
求m为何值时,△ABC的面积S最大。
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=,b=4,且BC边上的高h=
。
(1)求角C;
(2)求边a。
选修4—5:不等式选讲
已知,若不等式
恒成立,求实数
的取值范围.