(本小题满分13分)
如图6所示,在直角坐标平面上的矩形中,
,
,点
,
满足
,
,点
是
关于原点的对称点,直线
与
相交于点
.
(Ⅰ)求点的轨迹方程;
(Ⅱ)若过点的直线与点
的轨迹相交于
,
两点,求
的面积的最大值.
图6
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据:
![]() |
3 |
4 |
5 |
6 |
![]() |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:)
已知向量
(1)求的值
(2)若,求
的值.
已知,
,
.
(1)若∥
,求
的值;
(2)若,求
一个口袋内装有大小相同的5 个球,其中3个白球分别记为:A1、A2、A3;2个黑球分别记为B1、B2,从中一次摸出2个球.(Ⅰ)写出所有的基本事件;(Ⅱ)求摸出2球均为白球的概率.
设集合,
,
, 若
.
(1)求b = c的概率;
(2)求方程有实根的概率