在非负数构成的数表
中每行的数互不相同,前6列中每列的三数之和为1,,
,
,
,
,
,
均大于.如果
的前三列构成的数表
满足下面的性质:对于数表
中的任意一列
(
,2,…,9)均存在某个
使得
⑶.
求证:
(ⅰ)最小值,
,2,3一定自数表
的不同列.
(ⅱ)存在数表中唯一的一列
,
,2,3使得
数表
仍然具有性质.
已知函数。
(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。
(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;
(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,
恒有f(x)>g(x)成立。
已知数列{}中,
,且
对任意正整数都成立,数列{
}的前n项和为Sn。
(1)若,且
,求a;
(2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项
按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由;
(3)若。
如图,某商业中心O有通往正东方向和北偏东30º方向的两条街道,某公园P位于商业中心北偏东角(
),且与商业中心O的距离为
公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处。
(1)当AB沿正北方向时,试求商业中心到A,B两处的距离和;
(2)若要使商业中心O到A,B两处的距离和最短,请确定A,B的最佳位置。
在三棱锥P-ABC中,D为AB的中点。
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
已知函数部分图象如图所示。
(1)求函数的解析式;
(2)当时,求函数
的值域。