已知数列{}中,
在直线y=x上,其中n=1,2,3….
(Ⅰ)令
(Ⅱ)求数列
(Ⅲ)设的前n项和,是否存在实数
,使得数列
为等差数列?若存在,试求出
.若不存在,则说明理由。
(本小题满分12分)已知p:函数在
上单调递增;q:关于
的不等式
的解集为R.若
为真命题,
为假命题,求
的取值范围.
(本小题满分10分)选修44:坐标系与参数方程
在极坐标系内,已知曲线的方程为
,以极点为原点,极轴方向为
正半轴方向,利用相同单位长度建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求曲线的直角坐标方程以及曲线
的普通方程;
(2)设点为曲线
上的动点,过点
作曲线
的切线,求这条切线长的最小值.
(本小题满分10分)选修41:几何证明选讲
如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD .
(1)求证:DE是圆O的切线;
(2)如果AD ="AB" = 2,求EB的长.
(本小题满分l2分) 已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题满分12分)
平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q
作斜率不为零的直线
交曲线E于点
.
(1)求曲线E的方程;
(2)求证:;
(3)求面积的最大值.