已知等比数列的首项
,公比
,数列
前n项和记为
,前n
项积记为.
(Ⅰ)求数列的最大项和最小项;
(Ⅱ)判断与
的大小, 并求
为何值时,
取得最大值;
(Ⅲ)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这
些等差数列的公差按从小到大的顺序依次设为,证明:数列
为等比数列。
(参考数据)
(本小题满分14分) 已知函数,且函数
是
上的增函数。
(1)求的取值范围;
(2)若对任意的,都有
(e是自然对数的底),求满足条件的最大整数
的值。
.(本小题满分14分)
已知椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲
线上取两个点,将其坐标记录于下表中:
![]() |
3 |
![]() |
4 |
![]() |
![]() |
![]() |
0 |
![]() |
![]() |
(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过
的焦点
;②与
交不同两点
且满
足?若存在,求出直线
的方程;若不存在,说明理由。
(本小题满分14分)
一个四棱锥的三视图如图所示,E为侧棱PC上一动点。
(1)画出该四棱锥的直观图,并指出几何体的主要特征(高、底等).
(2)点在何处时,
面EBD,并求出此时二面角
平面角的余弦值.
(本小题满分12分)
2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D
两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假
设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某
运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作 |
K |
D |
||
得分 |
100 |
80 |
40 |
10 |
概率 |
![]() |
![]() |
![]() |
![]() |
乙系列:
动作 |
K |
D |
||
得分 |
90 |
50 |
20 |
0 |
概率 |
![]() |
![]() |
![]() |
![]() |
现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一
名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。