.(本小题满分14分)
已知椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲
线上取两个点,将其坐标记录于下表中:
![]() |
3 |
![]() |
4 |
![]() |
![]() |
![]() |
0 |
![]() |
![]() |
(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过
的焦点
;②与
交不同两点
且满
足?若存在,求出直线
的方程;若不存在,说明理由。
某学校100名学生期中考试语文成绩的频率分布直方图如下右图所示,其中成绩分组区间是:,
,
,
,
。
求图中a的值;
根据频率分布直方图,估计这100名学生语文成绩的平均分;
若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数
之比如下表所示,求数学成绩在之外的人数。
分数段 |
![]() |
![]() |
![]() |
![]() |
x![]() |
1:1 |
2:1 |
3:4 |
4:5 |
设函数(
).
(1)讨论的奇偶性;
(2)当时,求
的单调区间;
(3)若对
恒成立,求实数
的取值范围.
已知关于的二次函数
(1)设集合和
分别从集合
和
中随机取一个数作为
和
,求函数
在区间
上是增函数的概率.
(2)设点(a,b)是区域内的随机点,求函数
在区间
上是增函数的概率.
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.
某种产品的广告费支出与销售额
(单位:万元)之间有如下对应数据:
![]() |
2 |
4 |
5 |
6 |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
(参考数据:
参考公式:线性回归方程系数:,
)