(本小题满分15分)平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含的式子表示);
(2)已知椭圆(其中
)的左、右顶点分别为D、B,
⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.
已知抛物线,点
关于
轴的对称点为
,直线
过点
交抛物线于
两点.
(1)证明:直线的斜率互为相反数;
(2)求面积的最小值;
(3)当点的坐标为
,
且
.根据(1)(2)推测并回答下列问题(不必说明理由):
①直线的斜率是否互为相反数? ②
面积的最小值是多少?
在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人投篮3次,且第一次由甲开始投篮,假设每人每次投篮命中与否均互不影响.
(1)求3次投篮的人依次是甲、甲、乙的概率;
(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求
的分布列和数学期望.
如图所示,在边长为的正方形
中,点
在线段
上,且
,
,作
,分别交
,
于点
,
,作
,分别交
,
于点
,
,将该正方形沿
,
折叠,使得
与
重合,构成如图所示的三棱柱
.
(1)求证:平面
;
(2)求四棱锥的体积;
(3)求平面与平面
所成角的余弦值.
已知数列,其中
,数列
的前
项和
,数列
满足
.
(1)求数列的通项公式;
(2)是否存在自然数,使得对于任意
,
,有
恒成立?若存在,求出
的最小值;
已知分别为
的三边
所对的角,向量
,
,且
(1)求角的大小;
(2)若成等差数列,且
,求边
的长