如图,椭圆C:的顶点为A1,A2,B1,B2,焦点为F1,F2,,= , (Ⅰ)求椭圆C的方程;(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线, ,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由。
已知函数的部分图像如图所示. (1)求函数的解析式; (2)若,,求.
已知函数,. (1)若,求证:当时,; (2)若在区间上单调递增,试求的取值范围; (3)求证:.
已知椭圆的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切. (1)求椭圆的方程; (2)抛物线与椭圆有公共焦点,设与轴交于点,不同的两点、在上(、与不重合),且满足,求的取值范围.
已知数列的通项公式为,在等差数列数列中,,且,又、、成等比数列. (1)求数列的通项公式; (2)求数列的前项和.
如图,四棱锥的底面是正方形,平面,为上的点,且. (1)证明:; (2)若,求二面角的余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号