已知椭圆
(1)求椭圆的焦点顶点坐标、离心率及准线方程;
(2)斜率为1的直线l过椭圆上顶点且交椭圆于A、B两点,求|AB|的长
(本小题满分14分)
已知动圆P(圆心为点P)过定点A(1,0),且与直线
相切。记动点P的轨迹为C。
(Ⅰ)求轨迹C的方程;
(Ⅱ)设过点P的直线l与曲线C相切,且与直线
相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。
(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。
(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求
的值;若不存在,说明理由。
(本小题满分13分)
设函数
,其中
,且a≠0.
(Ⅰ)当a=2时,求函数
在区间[1,e]上的最小值;
(Ⅱ)求函数
的单调区间。
(本小题满分13分)
已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为
。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的焦点在y轴上,斜率为1的直线l与C相交于A,B两点,且
,求直线l的方程。
(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。
(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。