已知椭圆的两个焦点是
与
,点
是椭圆外的动点,满足
.点
是线段
与该椭圆的交点,点
在线段
上,并且满足
.
(Ⅰ)设为点
的横坐标,证明
;
(Ⅱ)求点的轨迹
的方程;
(Ⅲ)试问:在点的轨迹
上,是否存在点
,使
的面积为
?若存在,求
的正切值;若不存在,请说明理由.
记等差数列{}的前n项和为
,已知
,
.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)令,求数列{
}的前项和
.
一种放射性元素,最初的质量为500g,按每年10﹪衰减.
(Ⅰ)求t年后,这种放射性元素质量ω的表达式;
(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)
已知一条曲线上的点到定点的距离是到定点
距离的二倍,求这条曲线的方程.
已知抛物线:
,焦点为
,其准线与
轴交于点
;椭圆
:分别以
为左、右焦点,其离心率
;且抛物线
和椭圆
的一个交点记为
.
(1)当时,求椭圆
的标准方程;
(2)在(1)的条件下,若直线经过椭圆
的右焦点
,且
与抛物线
相交于
两点,若弦长
等于
的周长,求直线
的方程
.
如图,三棱柱中,
面
,
=
,
,
为
的中点,
为
的中点:
(1)求直线与
所成的角的余弦值;
(2)在线段上是否存在点
,使
平面
,若存在,求出
;若不存在,说明理由。