已知椭圆的两个焦点是
与
,点
是椭圆外的动点,满足
.点
是线段
与该椭圆的交点,点
在线段
上,并且满足
.
(Ⅰ)设为点
的横坐标,证明
;
(Ⅱ)求点的轨迹
的方程;
(Ⅲ)试问:在点的轨迹
上,是否存在点
,使
的面积为
?若存在,求
的正切值;若不存在,请说明理由.
某学科的试卷中共有12道单项选择题,(每个选择题有4个选项,其中仅有一个选项是正确的,答对得5分,不答或答错得0分)。某考生每道题都给出了答案,已确定有8道题答案是正确的,而其余的题中,有两道题每题都可判断其两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜。对于这12道选择题,试求:
(1)该考生得分为60分的概率;
(2)该考生所得分数ξ的分布列及数学期望Eξ.
如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
已知直线的极坐标方程为
,曲线C的参数方程为
,设
点是曲线C上的任意一点,求
到直线
的距离的最大值.
已知矩阵=
,求
的特征值
,
及对应的特征向量
.
(本小题16分)
已知函数,
为正常数。
(1)若,且
,求函数
的单调增区间;
(2)若,且对任意
,
,都有
,求
的的取值范围。