设i,j是平面直角坐标系中x轴和y轴正方向上的单位向量,=4i-2j,
=7i+4j,
=3i+6j,求四边形ABCD的面积.
是否存在常数a,b使等式对于一切n∈N*都成立?若存在,求出a,b的值,若不存在,请说明理由。
已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),
(1)求P1,P2两点在双曲线xy=6上的概率;
(2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。
设集合A=(―∞,―2]∪[3,+∞),关于x的不等式(x-2a)·(x+a)>0的解集为B(其中a<0).
(1)求集合B;
(2)设p:x∈A,q:x∈B,且Øp是Øq的充分不必要条件,求a的取值范围。
如图,棱柱中,四边形
是菱形,四边形
是矩形,
.
(1)求证:平面;
(2)求点到平面
的距离;
(3)求直线与平面
所成角的正切值.
如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,
(1)求证:平面
.
(2)求证:平面