已知函数f(x)=ax--3ln x,其中a为常数.
(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在
上的最小值;
(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;
(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.
如图,在平行四边形ABCD中,AD=2AB=2,∠BAD=60º,M、N分别是对角线BD、AC上的点,AC、BD相交于点O,已知BM=BO,ON=
OC.设向量
=a,
=b
(1)试用a,b表示;w
(2)求||.
在△ABC中,已知tanA=3,sinB=,求角C的大小.
在△ABC中,角A、B、C的对边分别为a、b、c,满足(c-2a)cosB+bcosC=0
(1)求角B的大小;
(2)若a=2,cosA=,求c的值
(本题16分)已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OMON(O为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
如图,互相垂直的两条公路、
旁有一矩形花园
,现欲将其扩建成一个更大的三角形花园
,要求
在射线
上,
在射线
上,且
过点
,其中
米,
米. 记三角形花园
的面积为S.
(Ⅰ)当的长度是多少时,S最小?并求S的最小值.
(Ⅱ)要使S不小于平方米,则
的长应在什么范围内?