(本小题满分16分)设数列的通项公式为
. 数列
定义如下:对于正整数m,
是使得不等式
成立的所有n中的最小值.
(Ⅰ)若,求
;(Ⅱ)若
,求数列
的前2m项和公式;
(Ⅲ)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.
在长方体中,
,
,
、
分别为
、
的中点.
(1)求证:平面
;
(2)求证:平面
.
已知椭圆的方程为
,双曲线
的左、右焦点分别为
的左、右顶点,而
的左、右顶点分别是
的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆
及双曲线
都恒有两个不同的交点,且L与的两个焦点A和B满足
(其中O为原点),求
的取值范围。
已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
在抛物线 y2=4x上恒有两点关于直线l:y=kx+3对称,求k的范围.
设直线与双曲线
交于A、B,且以AB为直径的圆过原点,求点
的轨迹方程.