甲、乙两队参加环保知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为
,且各人答题正确与否相互之间没有影响.用
表示甲队的总得分.
(Ⅰ)求随机变量的分布列和数学期望;
(Ⅱ)用表示“甲、乙两个队总得分之和等于3”这一事件,用
表示“甲队总得分大于乙队总得分”这一事件,求
.
已知圆x2+y2=1和双曲线(x-1)2-y2=1,直线l与双曲线交于不同两点A、B,且线段AB的中点恰是l与圆相切的切点,求直线l的方程.
已知椭圆C的方程为,点P(a,b)的坐标满足
,过点P的直线l与椭圆交于A、B两点,点Q为线段AB的中点,求:
(1)点Q的轨迹方程.
(2)点Q的轨迹与坐标轴的交点的个数.
对于数列,规定数列
为数列
的一阶差分数列,其中
;一般地,规定
为
的k阶差分数列,其中
且k∈N*,k≥2。
(1)已知数列的通项公式
。试证明
是等差数列;
(2)若数列的首项a1=―13,且满足
,求数列
及
的通项公式;
(3)在(2)的条件下,判断是否存在最小值;若存在,求出其最小值,若不存在,说明理由。
已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
设{an}是由正数组成的等比数列,Sn是其前n项和,证明:.