游客
题文

求证:

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分12分)
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.

视觉
视觉记忆能力
偏低
中等
偏高
超常
听觉
记忆
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1

由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为
(1)试确定的值;
(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率.

平面直角坐标系中,将曲线为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线.以坐标原点为极点,的非负半轴为极轴,建立的极坐标中的曲线的方程为,求公共弦的长度.

(本小题满分10分)选修4-1:几何证明选讲
如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.

求证:(Ⅰ)
(Ⅱ)

已知函数在点处的切线方程为
(Ⅰ)求的表达式;
(Ⅱ)若满足恒成立,则称的一个“上界函数”,如果
函数为实数)的一个“上界函数”,求的取值范围;
(Ⅲ)当时,讨论在区间(0,2)上极值点的个数.

已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.
(Ⅰ)求M点的轨迹T的方程;
(Ⅱ)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号