(本小题满分12分)已知抛物线:
(
为正常数)的焦点为
,过
做一直线
交抛物线
于
,
两点,点
为坐标原点.
(1)若的面积记为
,求
的值;
(2)若直线垂直于
轴,过点P做关于直线
对称的两条直线
,
分别交抛物线C于M,N两点,证明:直线MN斜率等于抛物线在点Q处的切线斜率.
(小题满分12分)已知函数在点
处的切线
的斜率为
.
(Ⅰ)求实数的值;
(Ⅱ)证明:函数的图象恒在直线
的下方(点
除外);
(Ⅲ)设点,当
时,直线
的斜率恒大于
,试求实数
的取值范围.
(本小题满分12分)已知函数f(x)=x2-2(a+1)x+2alnx(a>0).
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间;
(3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.
(本小题满分10分)直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.
(1)求证:;
(2)求证:平面
.
如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.
设数列的前n项和为
,且满足
.
(1)求;
(2)猜想数列的通项公式
,并用数学归纳法证明