(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)
(本小题满分10分)选修4—4:坐标系与参数方程已知直线的参数方程为
(
为参数),曲线C的极坐标方程是
,以极点为原点,极轴为
轴正方向建立直角坐标系,点
,直线
与曲线C交于A、B两点.
(1)写出直线的极坐标方程与曲线C的普通方程;
(2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.
(本小题满分13分)
在锐角中,角
,
,
所对的边分别为
,
,
.已知
.
(Ⅰ)求;
(Ⅱ)当,且
时,求
.
本小题满分10分)选修4-5,不等式选讲
已知,且
.求证:|
.
(本小题满分10分)选修4-4:坐标系与参数方程
已知圆C的参数方程为,若P是圆C与y轴正半轴的交点,以圆心C为
极点,x轴的正半轴为极轴建立极坐标系,求过点P的圆C的切线的极坐标方程.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,在直径是AB的半圆上有两个不同的点M、N,设AN与BM的交点是P.
求证:.
(本小题满分12分)
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由。