(本小题满分12分)
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由。
数列{}的前
项和为
,
是
和
的等差中项,等差数列{
}满足
,
.
(1)求数列{},{
}的通项公式;
(2)若,求数列
的前
项和
.
在中,角
所对的边分别为
,且
.
(1)求角的值;(2)若
为锐角三角形,且
,求
的取值范围.
在△ABC中,角A,B,C的对边分别为,且A,B,C成等差数列。
(1)若,
,求△ABC的面积;
(2)若成等比数列,试判断△ABC的形状。
若不等式组的解集中所含的整数解只有-2,求k取值范围
(本小题满分15分)如图,已知抛物线上点
到焦点
的距离为3,直线
交抛物线
于
两点,且满足
。圆
是以
为圆心,
为直径的圆.
(1)求抛物线和圆
的方程;
(2)设点为圆
上的任意一动点,求当动点
到直线
的距离最大时的直线方程.