设函数 f ( x ) = x 3 + 2 a x 2 + b x + a , g ( x ) = x 2 - 3 x + 2 ,其中 x ∈ R , a , b 为常数,已知曲线 y = f ( x ) 与 y = g ( x ) 在点 ( 2 , 0 ) 处有相同的切线 l . (Ⅰ)求 a , b 的值,并写出切线 l 的方程; (Ⅱ)若方程 f ( x ) + g ( x ) = m x 有三个互不相同的实根 0 , x 1 , x 2 ,其中 x 1 < x 2 ,且对任意的 x ∈ [ x 1 , x 2 ] , f ( x ) + g ( x ) < m ( x - 1 ) 恒成立,求实数 m 的取值范围.
定义在R上的函数,对任意的,有,且. (1) 求证:;(2)求证:是偶函数.
已知函数是奇函数,且. (1)求函数f(x)的解析式; (2)判断函数f(x)在上的单调性,并加以证明.
命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2-x-6≤0或x2+2x-8>0.若非p是非q的必要不充分条件,求a的取值范围.
设其中,曲线在点处的切线垂直于轴. (Ⅰ)求的值; (Ⅱ)求函数的极值.
已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)证明:当,且时,.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号