游客
题文

设函数 f ( x ) = x 3 + 2 a x 2 + b x + a , g ( x ) = x 2 - 3 x + 2 ,其中 x R a , b 为常数,已知曲线 y = f ( x ) y = g ( x ) 在点 ( 2 , 0 ) 处有相同的切线 l
(Ⅰ)求 a , b 的值,并写出切线 l 的方程;
(Ⅱ)若方程 f ( x ) + g ( x ) = m x 有三个互不相同的实根 0 , x 1 , x 2 ,其中 x 1 < x 2 ,且对任意的 x [ x 1 , x 2 ] , f ( x ) + g ( x ) < m ( x - 1 ) 恒成立,求实数 m 的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 不定方程和方程组
登录免费查看答案和解析
相关试题

已知函数,且函数上的增函数。
(1)求的取值范围;
(2)若对任意的,都有(e是自然对数的底),求满足条件的最大整数的值。

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:


3
2
4



0
4

(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由。

2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:

动作
K
D
得分
100
80
40
10
概率




乙系列:

动作
K
D
得分
90
50
20
0
概率




现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX

一个四棱锥的三视图如图所示,E为侧棱PC上一动点。

(1)画出该四棱锥的直观图,并指出几何体的主要特征(高、底等).
(2)点在何处时,面EBD,并求出此时二面角平面角的余弦值

已知等差数列满足:的前n项和为
(Ⅰ)求
(Ⅱ)令bn=),求数列的前n项和

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号