游客
题文

设函数 f ( x ) = x 3 + 2 a x 2 + b x + a , g ( x ) = x 2 - 3 x + 2 ,其中 x R a , b 为常数,已知曲线 y = f ( x ) y = g ( x ) 在点 ( 2 , 0 ) 处有相同的切线 l
(Ⅰ)求 a , b 的值,并写出切线 l 的方程;
(Ⅱ)若方程 f ( x ) + g ( x ) = m x 有三个互不相同的实根 0 , x 1 , x 2 ,其中 x 1 < x 2 ,且对任意的 x [ x 1 , x 2 ] , f ( x ) + g ( x ) < m ( x - 1 ) 恒成立,求实数 m 的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 不定方程和方程组
登录免费查看答案和解析
相关试题

在△ABC中,a,b,c分别为角A、B、C的对边,
(1)求A的最大值;(2)当角A最大时,求a.

如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 ( 1 , 2 2 ) ,离心率为 2 2 ,左、右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 P F 2 与椭圆的交点分别为 A , B C , D O 为坐标原点.

image.png


(I)求椭圆的标准方程;
(II)设直线 P F 1 P F 2 的斜线分别为 k 1 , k 2 .
(i)证明: 1 k 1 - 3 k 2 = 2
(ii)问直线 l 上是否存在点 P ,使得直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.

在如图所示的几何体中,四边形 A B C D 是正方形, M A 平面 A B C D P D / / M A E G F 分别为 M B P B P C 的中点,且 A D = P D = 2 M A .

image.png

(I)求证: 平面 E F G 平面 P D C

(Ⅱ)求三棱锥 P - M A B 与四棱锥 P - A B C D 的体积之比。

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为 m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为 n ,求 n < m + 2 的概率.

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为 m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为 n ,求 n < m + 2 的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号