某企业的某种产品产量与单位成本统计数据如下:
月份 |
1 |
2 |
3 |
4 |
5 |
6 |
产量(千件) |
2 |
3 |
4 |
3 |
4 |
5 |
单位成本(元/件) |
73 |
72 |
71 |
73 |
69 |
68 |
(用最小二乘法求线性回归方程系数公式
注:,
)
(1)试确定回归方程;
(2)指出产量每增加1 件时,单位成本下降多少?
(3)假定产量为6 件时,单位成本是多少?单位成本为70元/件时,产量应为多少件?
在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.
(1)求角A的大小;(2)若sinB·sinC=sin2A,试判断△ABC的形状.
如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。
已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
如图,F1,F2是离心率为的椭圆C:
(a>b>0)的左、右焦点,直线
:x=-
将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围.
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.
(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.