如图,已知正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为32,点E在侧棱AA1上,点F在侧棱BB1上,且AE=22,BF=2. (I) 求证:CF⊥C1E; (II)求二面角E-CF-C1的大小.
设函数的定义域为,若存在常数,使对均成立, 则称为函数.现给出下列函数:①;②; ③; ④; 你认为上述四个函数中,哪几个是函数,请说明理由.
已知动圆过定点,且与直线相切. (1)求动圆的圆心轨迹的方程; (2) 是否存在直线,使过点,并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.
已知关于的一元二次方程,①,②,求方程①和②的根都是整数的充要条件.
已知向量,试求向量,使得该向量与轴垂直, 且满足,,求向量.
如图,边长为的等边△所在的平面垂直于矩形所在的平面,,为的中点. (1)证明:; (2)求二面角的大小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号