(本小题满分12分)
某企业为适应市场需求,准备投入资金20万生产W和R型两种产品.经市场预测,生产W型产品所获利润(万元)与投入资金
(万元)成正比例关系,又估计当投入资金6万元时,可获利润1.2万元.生产R型产品所获利润
(万元)与投入资金
(万元)的关系满足
,为获得最大利润,问生产W.R型两种产品各应投入资金多少万元?获得的最大利润是多少?(精确到0.01万元)
设是平面上的两个向量,若向量
与
互相垂直.
(Ⅰ)求实数的值;
(Ⅱ)若,且
,求
的值.
已知数列的前
项和为
.
(Ⅰ)求数列的通项公式
;
(Ⅱ)记,求数列
的前
项和
如图,两矩形ABCD,ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为,M、N分别为DE与DB的中点,且MN=1.
(1) 求证:MN丄平面ABCD
(2) 求线段AB的长;
(3) 求二面角A—DE—B的平面角的正弦值.
设函数,若函数在点
处的切线为
,数列
定义:
。
(1)求实数的值;
(2)若将数列的前
项的和与积分别记为
。证明:对任意正整数
,
为定值;证明:对任意正整数
,都有
。
已知分别是双曲线
的左、右焦点,过
斜率为
的直线
交双曲线的左、右两支分别于
两点,过
且与
垂直的直线
交双曲线的左、右两支分别于
两点。
(1)求的取值范围;
求四边形面积的最小值。