据气象中心观察和预测:发生于地的沙尘暴一直向正南方向移动,其移动速度
与时间
的函数图象如图所示,过线段OC上一点
作横轴的垂线
,梯形
在直线
左侧部分的面积即为
内沙尘暴所经过的路程
.
(1)当时,求
的值;
(2)将随
变化的规律用数学关系式表示出来;
(3)若城位于
地正南方向,且距
地
,试判断这场沙尘暴是否会侵袭到
城,如果会,在沙尘暴发生后多长时间它将侵袭到
城?如果不会,请说明理由.
设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:
(1)a>0,且-3<<-
;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<
.
已知函数f(x)=ln x+-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.
已知函数f(x)=.
(1)求函数f(x)的最小值;
(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意m∈R恒成立;q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
设定义在(0,+∞)上的函数f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.
过椭圆Γ:=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为
.
(1)求椭圆Γ的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且⊥
?若存在,求出该圆的方程;若不存在,请说明理由.