已知函数的最大值为
.
(Ⅰ)求常数的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若将的图象向左平移
个单位,得到函数
的图象,求函数
在区间
上的最大值和最小值.
在△ABC中,求证:
设函数,函数
(其中
,e是自然对数的底数).
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若在
上恒成立,求实数a的取值范围;
(Ⅲ)设,求证:
(其中e是自然对数的底数).
已知双曲线W:的左、右焦点分别为
、
,点
,右顶点是M,且
,
.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点
在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.
已知数列的前n项和为
,
,且
(
),数列
满足
,
,对任意
,都有
.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)令,若对任意的
,不等式
恒成立,试求实数λ的取值范围.
如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小;
(Ⅲ)求点A到平面CDE的距离.