(本小题满分12分)随着教育改革的不断深入,各学校加大对学生综合素质的培养,为了丰富同学们的课余生活,某重点中学结合学校实际开展了诸多社团活动,为更好地开展社团活动,学校计划成立社团活动指导小组,想从“航模”,“乒乓球”,“声乐”,“社交礼仪”四个社团中利用分层抽样的方法抽取若干人组成校社团指导小组,有关数据见下表(单位:人)
社团 |
相关人数 |
抽取人数 |
航模 |
32 |
![]() |
乒乓球 |
24 |
3 |
声乐 |
![]() |
5 |
社交礼仪 |
16 |
![]() |
(Ⅰ)求,
,
的值;
(Ⅱ)若从“航模”与“社交礼仪”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.
在直角坐标系中,已知△ABC的顶点坐标为A,B
,C
.求△ABC在矩阵
作用下变换所得到的图形的面积.
已知M=,N=
,向量α=
.
(1)验证:(MN)α=M(Nα);
(2)验证这两个矩阵不满足MN=NM.
在平面直角坐标系xOy中,直线l:x+y+2=0在矩阵M=对应的变换作用下得到直线m:x-y-4=0,求实数a、b的值.
二阶矩阵M对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).
(1)求矩阵M;
(2)若直线l在此变换下所变换成的直线的解析式l′:11x-3y-68=0,求直线l的方程.
已知矩阵M=,N=
,矩阵MN对应的变换把曲线y=
sin
x变为曲线C,求曲线C的方程.