(本小题12分)图甲是一个几何体的表面展开图,图乙是棱长为的正方体。(Ⅰ)若沿图甲中的虚线将四个三角形折叠起来,使点、、、重合,则可以围成怎样的几何体?请求出此几何体的体积;(Ⅱ)需要多少个(I)的几何体才能拼成一个图乙中的正方体?请按图乙中所标字母写出这几个几何体的名称;(Ⅲ)在图乙中,点为棱上的动点,试判断与平面是否垂直,并说明理由。
如图,在四棱锥中,底面为矩形,底面,、分别是、中点. (1)求证:平面; (2)求证:.
已知函数 (1)求的最小值; (2)设,. (ⅰ)证明:当时,的图象与的图象有唯一的公共点; (ⅱ)若当时,的图象恒在的图象的上方,求实数的取值范围.
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面. (1)证明:平面.; (2)若,求三棱锥的体积.
已知数列满足,,. (1)若成等比数列,求的值; (2)是否存在,使数列为等差数列?若存在,求出所有这样的;若不存在,说明理由.
在锐角中,角的对边分别为.已知. (1)求B; (2)若,求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号