(12分)某电视台综艺频道主办一种有奖过关游戏,该游戏设有两关,只有过了第一关,才能玩第二关,每关最多玩两次,连续两次失败者被淘汰出局.过关者可获奖金,只过第一关获奖金900元,两关全过获奖金3600元.某同学有幸参与了上述游戏,且该同学每一次过关的概率均为,各次过关与否互不影响.在游戏过程中,该同学不放弃所有机会.
(1)求该同学仅获得900元奖金的概率;
(2)若该同学已顺利通过第一关,求他获得3600元奖金的概率;
(3)求该同学获得奖金的数学期望(精确到元).
(本小题13分)
定义在上的函数
同时满足以下条件:
①在
上是减函数,在
上是增函数;②
是偶函数;
③在
处的切线与直线
垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求函数
在
上的最小值.
(本小题13分)
一个多面体的直观图和三视图如图所示,其中,
分别是
,
的中点,
是
上的一动点.
(Ⅰ)求该几何体的体积与表面积;
(Ⅱ)求证:⊥
;
(Ⅲ)当时,在棱
上确定一点
,使得
//平面
,并给出证明.
(本小题13分)
已知等比数列满足
,且
是
,
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求使
成立的正整数
的最小值.
(本小题13分)
已知向量,
,函数
.
(Ⅰ)求函数的最小正周期
;
(Ⅱ)已知,
,
分别为
内角
,
,
的对边,其中
为锐角,
,
,且
,求
,
和
的面积
.
(本题满分15分) 设抛物线C1:x2=4y的焦点为F,曲线C2与C1关于原点对称.
(Ⅰ) 求曲线C2的方程;
(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由