(本小题满分13分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.(1)若,(),数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;(2)证明:若数列是“M类数列”,则数列也是“M类数列”;(3)若数列满足,,为常数,求数列前项的和,并判断是否为“M类数列”,说明理由.
已知直线. (1)证明直线过定点,并求出该定点的坐标; (2)求直线与第二象限所围成三角形的面积的最小值,并求面积最小时直线的方程.
正三棱柱中,点是的中点,. (1)求证:平面; (2)求证:平面.
如图在三棱柱中,点分别是的中点,求证: (1)四点共面; (2)
在直三棱柱中, , 为棱上任一点. (1)求证:直线∥平面; (2)求证:平面⊥平面.
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3), (1)求AB边所在的直线方程; (2)求AB边的高所在直线方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号