如图, 是圆 的直径, 是圆 上位于 异侧的两点,证明
设数列
的前
项和为
.若对任意的正整数
,总存在正整数
,使得
,则称
是"
数列".
(1)若数列
的前
项和为
,证明:
是"
数列".
(2)设
是等差数列,其首项
,公差
,若
是"
数列",求
的值;
(3)证明:对任意的等差数列
,总存在两个"
数列"
和
,使得
成立.
已知函数
,其中
是自然对数的底数.
(1)证明:
是
上的偶函数;
(2)若关于
的不等式
在
上恒成立,求实数
的取值范围;
(3)已知正数
满足:存在
,使得
成立,试比较
与
的大小,并证明你的结论.
如图:为保护河上古桥
,规划建一座新桥
,同时设立一个圆形保护区,规划要求,新桥
与河岸
垂直;保护区的边界为圆心
在线段
上并与
相切的圆,且古桥两端
和
到该圆上任一点的距离均不少于
,经测量,点
位于点
正北方向
处,点
位于点
正东方向
处,(
为河岸),
.
(1)求新桥
的长;
(2)当
多长时,圆形保护区的面积最大?
如图在平面直角坐标系
中,
分别是椭圆
的左右焦点,顶点
的坐标是
,连接
并延长交椭圆于点
,过点
作
轴的垂线交椭圆于另一点
,连接
.
(1)若点
的坐标为
,且
,求椭圆的方程;
(2)若
,求椭圆离心率
的值.