(本题满分 13分)设函数
(
).
(1)当时,求
的极值;
(2)当时,求
的单调区间.
已知直线与曲线
相切。
(1)求b的值;
(2)若方程上有两个解
,求m的取值范围。
.如图5(1)是一个水平放置的正三棱柱ABC—A1B1C1,D是棱BC的中点,正三棱柱的正(主)视图如图5(2)。
(1)求正三棱柱ABC—A1B1C1的体积;
(2)证明:A1B//平面ADC1;
17.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:
优秀 |
非优秀 |
总计 |
|
甲班 |
10 |
||
乙班 |
30 |
||
合计 |
105 |
已知在全部105人中抽到随机抽取2人为优秀的概率为
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”。
(3)若按下面的方法从甲班优秀的学生抽取一人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取的人的序号,试求抽到6或10的概率。
已知,其中向量
(1)求的最小正周期和最小值;
(2)在
中,角A、B、C的对边分别为a、b、c,若
求边长
c的值。
已知抛物线,若抛物线
上存在不同两点A、B满足
(1)求实数p的取值范围;
(2)当p=2时,抛物线上是否存在异于A,B的点C,使得经过A,B,C三点的圆和抛物线
在点C处有相同的切线,若
存在,求出点C的坐标;若不存在,请说明理由。