(本小题满分13分)已知曲线D:交轴于A、B两点,曲线C是以AB为长轴,离心率的椭圆。(1)求椭圆的标准方程;(2)设M是直线上的任一点,以OM为直径的圆交曲线D于P,Q两点(O为坐标原点)。若直线PQ与椭圆C交于G,H两点,交x轴于点E,且。试求此时弦PQ的长。
已知函数,常数. (1)讨论函数的奇偶性,并说明理由; (2)若函数在上为增函数,求的取值范围.
已知. (1)求sinx-cosx的值; (2)求的值.
已知x>0, y>0, 且x+y="1," 求的最小值。
(本小题满分13分) 已知数列{ an }的前n项和Sn满足,Sn=2an+(—1)n,n≥1。 (1)求数列{ an }的通项公式; (2)求证:对任意整数m>4,有
(本小题满分13分) 已知函数 (1)若且函数的值域为,求的表达式; (2)设为偶函数,判断能否大于零?并说明理由。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号