(本小题满分13分)(注意:在试题卷上作答无效)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为.(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率;(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(Ⅱ)设直线与轴、轴分别交于点,,求证:为定值.
定义在(0,+∞)上的函数f (x),对于任意的m,n∈(0,+∞),都有f (mn)=f (m)+f (n)成立,当x >1时,f (x)< 0. (1)求证:1是函数 f (x)的零点; (2)求证:f (x)是(0,+∞)上的减函数; (3)当f (2)= 时,解不等式f (ax+4)>1.
当满足时,求函数的最值及相应的的值.
已知二次函数满足. (1)求的解析式; (2)若在上有最小值,最大值,求a的取值集合.
已知集合集合,若A="B" ,求的值.
(1)已知求的值; (2)已知,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号