(本题14分)如图,在三棱锥SABC中,
,O为BC的中点.
(I)求证:面ABC;
(II)求异面直线与AB所成角的余弦值;
(III)在线段AB上是否存在一点E,使二面角的平面角的余弦值为
;若存在,求
的值;若不存在,试说明理由。
粉碎机的下料斗是正四棱台形(如图),它的两底面边长分别是80 mm和440 mm,高是200 mm,计算制造这一下料斗所需铁板是多少?
如图所示,三棱锥A-BCD的两条棱长AB=CD=6,其余各棱长均为5,此三棱锥的体积为,求三棱锥的内切球的体积.
圆柱形罐的直径为10cm,高为20cm,将两个直径为8cm的铁球放于罐中,
(1)求上面铁球球心到圆柱形罐顶的距离;
(2)若向罐中注水至刚好盖过上面的铁球,求需要多少水?
已知球O1,球O2,球O3的体积比为1∶8∶27,求它们的半径比.
有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.