某同学练习投篮,已知他每次投篮命中率为,
(1)求在他第三次投篮后,首次把篮球投入篮框内的概率;
(2)若想使他投入篮球的概率达到0.99,则他至少需投多少次?(lg2=0.3)
定义在R上的函数f(x)满足f(x+2)=-f(x),且当x∈[-1,1]时,f(x)=x3.
(1)求f(x)在[1,5]上的表达式;
(2)若A={x| f(x)>a, x∈R},且A,求实数a的取值范围.
为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校 |
相关人数 |
抽取人数 |
A |
X |
1 |
B |
36 |
y |
C |
54 |
3 |
(1)求x,y;
(2)若从高校A,C 抽取的人中选2人作专题发言,求这两人都来自高校C的概率.
记函数f(x)=的定义域为A,
的定义域为B.
(1)求集合A;
(2)求集合B.
(本小题满分14分)
下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为
,若已知
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
… |
… |
… |
… |
… |
![]() |
![]() |
![]() |
… |
![]() |
(1)求的值;
(2)求用表示
的代数式;
(3)设表中对角线上的数,
,
,……,
组成一列数列,设Tn=
+
+
+……+
求使不等式
成立的最小正整数n.
(本小题满分14分)已知函数(
)
(1) 判断函数的单调性;
(2) 是否存在实数使得函数
在区间
上有最小值恰为
? 若存在,求出
的值;若不存在,请说明理由.