游客
题文

(本小题满分14分)现有一批货物用轮船从甲地运往乙地,甲乙两地距离为500海里,已知该船最大速度为45海里/小时,每小时运输成本由燃料费用和其它费用组成.轮船每小时的燃料费用与轮船速度的平方成正比,其余费用为每小时960元.已知轮船速度为20海里/小时,全程运输成本为30000元.
(1)把全程运输成本(元)表示为速度(海里/小时)的函数;
(2)为了使全程运输成本最小,轮船应为多大速度行驶?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

设圆过点P(0,2), 且在轴上截得的弦RG的长为4.
(1)求圆心的轨迹E的方程;
(2)过点(0,1),作轨迹的两条互相垂直的弦,设的中点分别为,试判断直线是否过定点?并说明理由.

如图,四棱锥S—ABCD的底面是边长为1的正方形,

SD垂直于底面ABCD,SB=.
(I)求证BCSC;
(II)求面ASD与面BSC所成二面角的大小;
(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小.

已知函数图像上一点处的切线方程为,其中为常数.
(Ⅰ)函数是否存在单调减区间?若存在,则求出单调减区间(用表示);
(Ⅱ)若不是函数的极值点,求证:函数的图像关于点对称.

已知命题:方程有两个不等的负实根;:方程无实根.若“”为真,“”为假,求实数的取值范围.

如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由
B沿棱柱侧面经过棱C C1到点A1的最短路线长为,设这条最短路线与CC1的交
点为D.
(1)求三棱柱ABC-A1B1C1的体积;
(2)在平面A1BD内是否存在过点D的直线与平面ABC平行?证明你的判断;
(3)证明:平面A1BD⊥平面A1ABB1

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号