在平面直角坐标系中,动点
到两点
,
的距离之和等于
,设点
的轨迹为曲线
,直线
过点
且与曲线
交于
,
两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△
的面积;若不存在,说明理由.
如图,在三棱柱中,侧棱
底面
,
,
为
的中点,
(1)求证:平面
;
(2)过点作
于点
,求证:直线
平面
(3)若四棱锥的体积为3,求
的长度
如图,货轮在海上以50海里/时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为155o的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为125o.半小时后,货轮到达C点处,观测到灯塔A的方位角为80o.求此时货轮与灯塔之间的距离(得数保留最简根号).
已知向量,
,当
为何值时
(1) 与
垂直? (2)
与
平行?
甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率
(Ⅰ)取出的2个球都是白球,(Ⅱ)取出的两个球至少有一个是白球.
根据下面的要求,求的值.
(Ⅰ)请把解决该问题的程序框图补充完整;
(Ⅱ)请把解决该问题的程序补充完整.