如图,四棱锥
中,
,
,
,
,
为
的中点,
.
(1)求
的长;
(2)求二面角
的正弦值.
某商场举行的"三色球"购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 |
摸出红、蓝球个数 |
获奖金额 |
一等奖 |
3红1蓝 |
200元 |
二等奖 |
3红0蓝 |
50元 |
三等奖 |
2红1蓝 |
10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额
的分布列与期望
.
设
,其中
,曲线
在点
处的切线与
轴相交于点
.
(1)确定
的值;
(2)求函数
的单调区间与极值.
设
,集合
.
(1)求集合
(用区间表示);
(2)求函数
在
内的极值点.
在平面直角坐标系
中,已知椭圆
:
,
,且椭圆
上的点到点
的距离的最大值为
.
(1)求椭圆
的方程;
(2)在椭圆
上,是否存在点
,使得直线
:
与圆
:
相交于不同的两点
、
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.