(本小题满分10分)请选做一题,都做时按先做的题判分,都做不加分.
(1)已知向量
①求函数的最小正周期和值域;
②在△ABC中,角A、B、C所对的边分别是a、b、c,若且
,试判断△ABC的形状.
(2)已知锐角.
①求证:;
②设,求AB边上的高CD的长.
(本小题满分12分)
甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.
(本小题满分12分)
如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
(本小题满分13分)
如图,平面α⊥平面β,A∈α,B∈β,AB与平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=12,求A′B′的长度.
(本小题满分13分)
半径为10 cm的球被两个平行平面所截,两个截面圆的面积分别为36π cm2,64π cm2,求这两个平行平面的距离.
(本小题满分13分)
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60°,求正四棱锥P-ABCD的体积V.