:某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第
天的利润
(单位:万元,
),记第
天的利润率
,例如
(1)求
的值;
(2)求第
天的利润率
;
(3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.
某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.
(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;
(2)若该单位决定采用函数模型y=x-2lnx+a(a为常数)作为报销方案,请你确定整数
的值.(参考数据:ln2»0.69,ln10»2.3)
设
是定义在
上的函数,当
,且
时,有
.
(1)证明
是奇函数;
(2)当
时,
(a为实数). 则当
时,求
的解析式;
(3)在(2)的条件下,当
时,试判断
在
上的单调性,并证明你的结论.
设z是虚数,已知ω=z+
是实数,且-1<ω<2.
(1)求|z|的值及z的实部的取值范围;
(2)设u=
,求证:u为纯虚数;
设命题
:关于
的方程
无实根;命题
:函数
的定义域为
,若命题"p或q”是真命题,“p且q”是假命题,求实数a的取值范围.
已知集合
,
.
(1)若
,求实数
的值;
(2)若
,求实数
的取值范围.