(本小题10分)已知曲线,过
作
轴的平行线交曲线
于
,过
作曲线
的切线与
轴交于
,过
作与
轴平行的直线交曲线
于
,照此下去,得到点列
,和
,设
,
.
(1)求数列的通项公式;
(2)求证:;
(3)求证:曲线与它在点
处的切线,以及直线
所围成的平面图形的面积与正整数
的值无关.
已知函数,其中
若
在x=1处取得极值,求a的值;
求
的单调区间;
(Ⅲ)若的最小值为1,求a的取值范围。
在数列中,
(I)设,求数列
的通项公式
(II)求数列的前
项和
已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)证明:平面PAD⊥平面PCD;
(Ⅱ)试在棱PB上确定一点M,使截面AMC
把几何体分成的两部分.
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5. 同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和.
(Ⅰ)求事件“不大于6”的概率;
(Ⅱ)“为奇数”的概率和“
为偶数”的概率是不是相等?证明你的结论.
设函数的最小正周期为
.
(Ⅰ)求的值.
(Ⅱ)若函数的图像是由
的图像向右平移
个单位长度得到,求
的单调增区间.