(本小题16分)
已知数列满足:
(
为常数),数列
中,
。
(1)求;
(2)证明:数列为等差数列;
(3)求证:数列中存在三项构成等比数列时,
为有理数。
(本小题满分14分)已知直线和
.
问为何值时,有:(1)
?(2)
?
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的标准方程;
(2)设直线与圆相交于
两点,求实数
的取值范围;
(3)在(2)的条件下,是否存在实数,使得弦
的垂直平分线
过点
.
(本小题16分)四棱锥中,底面
是边长为8的菱形,
,若
,平面
⊥平面
.
(1)求四棱锥的体积;
(2)求证:⊥
.
已知圆心
(Ⅰ)写出圆C的标准方程;
(Ⅱ)过点作圆C的切线,求切线的方程及切线的长.
(本小题满分14分)如图,在五面体ABC—DEF中,四边形BCFE 是矩形,DE 平面BCFE.
求证:(1)BC 平面ABED;
(2)CF // AD.