科学家将外源目的基因与大肠杆菌的质粒进行重组,并在大肠杆菌中成功表达。下图表示构建重组质粒和筛选含目的基因的大肠杆菌的过程。请据图回答:
(1)步骤①和②中常用的工具酶是 。
(2)经过①和②步骤后,有些质粒上的 基因内插入了外源目的基因,形成重组质粒。
(3)步骤③是 的过程。为了促进该过程,应该用 处理大肠杆菌。
(4)步骤④:将三角瓶内的大肠杆菌接种到含四环素的培养基C上培养,目的是筛选
能在C中生长的大肠杆菌有 种。
(5)步骤⑤:用无菌牙签挑取C上的单个菌落,分别接种到D(含氨苄青霉素和四环素)和E(含四环素)两个培养基的相同位置上,一段时间后,菌落的生长状况如图所示。含目的基因的菌落位于(选填“D”或“E”) 上,请在图中相应的位置上圈出来。
一个正常眼色的果蝇种群由于受到射线照射,出现了两只褐眼雌果蝇,分别记为果蝇A和果蝇B。为研究果蝇A和果蝇B的突变是否为同一突变,进行了如下实验:
实验一:果蝇A × 纯合正常雄果蝇→F1中40正常(♀):38褐眼(♀):42正常(♂)
实验二:果蝇B × 纯合正常雄果蝇→F1中62正常(♀):62褐眼(♀):65正常(♂):63褐眼(♂)
实验三:实验二中F1褐眼雌雄果蝇互相交配→F2中25正常(♀):49褐眼(♀):23正常(♂):47褐眼(♂)
综合上述实验结果,请回答:
(1)果蝇A发生的突变是____________(显、隐)性突变,且该突变具有__________效应,突变基因位于______________染色体上。
(2)果蝇B发生的突变是___________(显、隐)性突变,该突变也具有上述类似的效应。果蝇B的突变发生在_______染色体上,理由是___________________。
(3)若上述突变基因均能独立控制褐色素的合成而表现褐眼,让果蝇A与实验二中F1代褐眼雄果蝇杂交,则褐眼的遗传遵循____________________定律,其后代出现褐眼果蝇的概率是__________。
为研究乙烯影响植物根生长的机理,研究者以拟南芥幼苗为材料进行实验。
(1)乙烯和生长素都要通过与__________结合,将________传递给靶细胞,从而调节植物的生命活动。
(2)实验一:研究者将拟南芥幼苗放在含不同浓度的ACC(乙烯前体,分解后产生乙烯)、IAA(生长素)的培养液中培养,测量并记录幼苗根伸长区细胞长度,结果如下表。
组别 |
植物激素及处理浓度(µM) |
根伸长区细胞长度(µm) |
1 |
对照 |
175.1 |
2 |
0.20ACC |
108.1 |
3 |
0.05IAA |
91.1 |
4 |
0.20ACC+0.05IAA |
44.2 |
实验结果说明乙烯和生长素都能够__________根生长,与单独处理相比较,两者共同作用时____________。
(3)实验二:将拟南芥幼苗分别放在含有不同浓度ACC的培养液中培养,12小时后测定幼苗根中生长素的含量,实验结果如图所示。据图分析,乙烯通过促进______________影响根生长。
(4)研究者将幼苗放在含NPA(生长素极性运输阻断剂)的培养液中培养,一段时间后,比较实验组和对照组幼苗根伸长区细胞长度,结果无显著差异。由此分析,研究者的目的是探究乙烯是否通过影响____________________影响根生长。
(5)综合上述各实验的结果可推测,乙烯影响根生长的作用最可能是通过促进生长素的____________实现的。
图1是仙人掌类植物特殊的CO2同化方式,吸收的CO2生成苹果酸储存在液泡中,液泡中的苹果酸经脱羧作用释放CO2用于光合作用;图2表示某热带地区A.B.C三类植物在晴朗夏季的光合作用日变化曲线,图3表示某植物在不同光照强度下单位时间内CO2释放量和O2产生总量的变化。请据图分析并回答:
(1)图1所示细胞在夜间能产生H+的具体场所有______________。该植物夜间能吸收CO2,却不能合成糖类等有机物的原因是缺少等物质。
(2)图1所示植物对应图2中的类植物(填字母),从生物进化的角度看,该特殊的CO2同化方式是的结果。
(3)图2中的A类植物在10~16时进行光合作用的暗反应,所需要的CO2有__________________。
(4)图2中的B和C植物,更适于生活在干旱缺水环境的是__________植物。
(5)分析图3可知,在光照强度为c时,该植物的光合速率_______(填大于/小于/等于)呼吸作用速率。若控制B植物幼苗的光照强度为d,且每天光照12h,再黑暗12h交替进行(假定温度保持不变),则B植物幼苗________(能/不能)正常生长。
阅读以下资料,并回答相关问题:
资料甲:20世纪六十年代,一些科学家尝试将番茄和马铃薯杂交,试图培育出一种地上长番茄,地下结马铃薯的“番茄—马铃薯”植株,始终未能成功。
资料乙:经过长期的实验,科学家们采用体细胞杂交的方法,终于得到了“番茄—马铃薯”植株,可惜它并没有如科学家所想象的那样,地上长番茄,地下结马铃薯。
资料丙:英国一家公司耗时十年,在2013年完成了土豆和西红柿的完美嫁接,开发出一种新的植物,可同时结出西红柿和土豆。收获时只需将植物连根拔起,就可在枝头收获西红柿,在根部摘取土豆。
(1)资料甲中,科学家们始终未成功的原因是番茄和马铃薯之间存在着。
(2)资料乙中,在进行体细胞杂交之前,必须先利用和去除细胞壁,获得具有活力的,再诱导其融合。
(3)对资料丙中的植株进行植物组织培养,能否获得大量“番茄—马铃薯”植株?;对三倍体西瓜进行植物组织培养,能否获得大量三倍体西瓜苗?。
(4)动物细胞也能进行融合,常用的诱导融合因素有PEG、电激和。动物细胞融合最重要的应用是利用融合得到的制备单克隆抗体。长期以来人们获得抗体的方法是向动物体内反复注射某种抗原,从动物 中分离出抗体。这种方法不仅产量低、纯度低,而且制备的抗体。单克隆抗体可用来制成“生物导弹”杀灭癌细胞,“生物导弹”中单克隆抗体的作用是。
回答下列有关微生物的问题:
(1)19世纪中期,关系到法国经济命脉的酿造业曾一度遭受毁灭性的打击。在生产过程中,发现葡萄酒变酸,表面观察到菌膜,造成该现象的生物是 。腐乳外部有一层致密的皮,这是 的匍匐菌丝形成的。制作泡菜时,有时坛内会长一层白膜,这是繁殖形成的。
(2)培养基一般都含有水、碳源、氮源和无机盐,除此之外,还需要满足微生物生长对pH、及氧气的需求,例如培养乳酸杆菌时需要在培养基中添加维生素。
(3)微生物的接种方法很多,如平板划线法、稀释涂布平板法、斜面接种和穿刺接种等方法,虽然这些技术的操作方法各不相同,但是其核心都是要,保证培养物的纯度。由一个细胞繁殖而来的肉眼可见的,就是菌落。
(4)从土壤中分离出分解尿素的细菌之后,要对其进行进一步的鉴定,要在以尿素为唯一氮源的培养基中加入,如果指示剂变 ,可初步鉴定该种细菌能够分解尿素。
(5)灭菌是用杀死物体内外所有的微生物,包括芽孢和孢子。对培养皿灭菌常用的方法是。在进行平板划线时,划线操作结束后,(需要或不需要)灼烧接种环。