已知函数最小正周期为
(1)求的单调递增区间
(2)在中,角
的对边分别是
,满足
,求函数
的取值范围
已知偶函数的最小值为0,
求的最大值及此时x的集合。
对于函数,若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
有且仅有两个不动点0和2.
(Ⅰ)试求b、c满足的关系式;
(Ⅱ)若c=2时,各项不为零的数列{an}满足4Sn·f()=1,
求证:<
<
;
(Ⅲ)设bn=-,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008.
已知二次函数
直线l2与函数的图象以及直线l1、l2与函数
的图象所围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为
(I)求函数的解析式;
(II)定义函数的三条切线,求实数m的取值范围。
|
如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2,求直线l的斜率的取值范围.
已知数列是首项为,公差为
的等差数列,
是首项为
,公比为的等比数列,且满足
,其中
.
(Ⅰ)求a的值
(Ⅱ)若数列与数列
有公共项,将所有公共项按原顺序排列后构成一个新数列
,求数列
的通项公式;
(Ⅲ)记(Ⅱ)中数列的前项之和为
,求证:
.