如图所示,流程图给出了无穷等差整数列,
时,输出的
时,输出的
(其中d为公差)
(I)求数列的通项公式
(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。
已知向量(
为常数且
),函数
在
上的最大值为
.(Ⅰ)求实数
的值;(Ⅱ)把函数
的图象向右平移
个单位,可得函数
的图象,若
在
上为增函数,求
的最大值.
设数列的前
项和为
,点
在直线
上,
为常数,
.
(Ⅰ)求;
(Ⅱ)若数列的公比
,数列
满足
,求证:
为等差数列,并求
;
(III)设数列满足
,
为数列
的前
项和,且存在实数
满足
,
,求
的最大值.
已知椭圆的方程为,它的一个焦点与抛物线
的焦点重合,离心率
,过椭圆的右焦点
作与坐标轴不垂直的直线
,交椭圆于
、
两点.
(Ⅰ)求椭圆的标准方程; (Ⅱ)设点,且
,求直线
的方程;
如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
已知函数在
处取得的极小值是
.
(1)求的单调递增区间;
(2)若时,有
恒成立,求实数
的取值范围.