如图的多面体是底面为平行四边形的直四棱柱ABCD—,经平面AEFG
所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60
(I)求证:BD⊥平面ADG;(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.
某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,得到成绩分布的频率分布直方图如图:
(1)若规定60分以上为合格,计算高一年级这次知识竞赛的合格率;
(2)将上述调查所得到的频率视为概率.现在从该校大量高一学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的合格人数为X.若每次抽取的结果是相互独立的,求X的分布列和期望E(X);
(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”.
一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数ξ的分布列为:
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;
(2)求η的分布列及期望E().
(本小题满分14分)已知函数.
(1)当时,试判断函数
的单调性;
(2)对于任意的,
恒成立,求
的取值范围.
(本小题满分14分)在平面直角坐标系中,已知椭圆
过点
,且椭圆
的离心率为
.
(1)求椭圆的方程;
(2)是否存在以为直角顶点且内接于椭圆
的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.
(本小题满分14分)已知等差数列的公差
,它的前
项和为
,若
,且
,
,
成等比数列.
(1)求数列的通项公式;
(2)设数列的前
项和为
,求证:
.